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1 Hilbert’s Theorem 90 and Galois Cohomology

1.1 Hilbert’s theorem 90

We will begin by proving this oddly named1 theorem we started last lecture.

Theorem 1.1 (Hilbert’s theorem 90). Suppose L/K us cyclic. Then N(a) = 1 iff a = b/σb
for some b ∈ L∗.

Proof. If a = a/σb, we leave it as an exercise to show that N(a) = 1.
We want to solve aσb = b. Think of aσ as a linear transformation on the vector space

L; we want to find some b 6= 0 fixed by this linear transformation. Does aσ have finite
order? (aσ)2 = aσaσ, so it takes b 7→ aσ(aσ(b)) = aσ(a)σ2(b). So (aσ)2 = aσ(a)σ2. We
can continue this to get

(aσ)n = aσaσ2a · · ·σn−1a︸ ︷︷ ︸
N(a)=1

σn︸︷︷︸
=1

= 1.

A fixed vector of any G is given by
∑

g∈G g(v). So the vector fixed by (aσ) is given by

b =
∑
i ∈ Z(aσ)i(θ) for any θ ∈ L. So b solves the problem, except we do not know that

b 6= 0. What is the correct choice of theta? Note that this is

θ + aσ(θ) + (aσ)2θ + · · · = θ + aσθ + aσ(a)σ2(θ) + aσ(a)σ2(a)σ3(θ)

= (a0σ
0 + a1σ

1 + a2σ
2 + · · · )(θ)

Use Artin’s lemma to get that the σi are linearly independent. We can then find a θ so
that the sum is 0.2

We will see later that this means that H−1(L∗) = 0 for L/K cyclic. Here, H−1(L∗) is
the Tate cohomology group.

1The name comes from Hilbert’s “Zahlbericht” (number report) in 1897
2Professor Borcherds does not like the way Lang did this proof. Lang pulls out the second expression

out of nowhere. Professor Borcherds says it seems like a “deus ex machina.”
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1.2 Applications of Hilbert’s theorem 90

Example 1.1. Suppose K contains a primitive n-th root ζ of unity. Take a = ζ. Then
N(a) = ζζ · · · ζ = 1. So a = b/σb for some b. So σ(b) = ζb. This makes σ(bn) = bn, so
bn ∈ K∗. So L = K( n

√
∗).

Example 1.2. Let’s solve x3 + x+ 1 = 0. The discriminant is −31, which is not a square
in Q, so the Galois group of the splitting field of this polynomial over Q is S3. This is a
solvable group because we have 1 ⊆ Z/3Z ⊆ S3. This gives us the picture

L

K

Q(ω)

3

2

1

Z/3Z

S3

3

2

What is K? K is a subfield of L fixed by Z/3Z. S3 acts on α1, α2, α3. Let σ be a
generator of Z/3Z. Then σ maps α1 7→ α2 7→ α3 7→ α1. K is generated by some α, where α
is fixed by σ, but the elements of S3 are not in Z/3Z. Try α = (α1−α2)(α2−α3)(α3−α1)
(find some polynomial in α1, α2, α3 fixed by Z/3Z but not S3. Now

α2 = (α1 − α2)
2(α2 − α3)

2(α3 − α1)
2

is symmetric in αi, so it is in the base field. It is the discriminant of x3 + x + 1, which is
−31. So K = Q(w,

√
−31).

Next, we want to describe L in terms of K. L/K is a cyclic extension, so K contains
cube roots of 1. So by Hilbert’s theorem 90, L = K( 3

√
∗), where ∗ is an eigenvector of σ

with eigenvalue equal to ω. Try α1 + ω−1σ(α1) + ω−1σ2(α1) = α1 + ω−1α2 + ω−2α3. Call
this y. Let z = α1 +wα2 +w2α3. If we find y, z, 0, we can find α1, α2, α3 by linear algebra.

We know that y3, z3 ∈ K and are fixe by σ.Expand these in polynomials in α1, α2, α3

to get that y3 + z3 = −27 and y3b3 = −27. So we get that y3 and z3 are roots of
x2 + 27z − 27 = 0. So y3, z3 = 27/2 ± 3

√
3i/2
√
−31, which means that y, z are given by

y = −3.04 . . . and z = 0.99 . . . . So α1 = (y + z)/3 ≈ −0.68 . . . .3

Example 1.3. Let’s solve degree 4 equations x4+bx2+cd+d by radicals. We will provide a
sketch. Look at the Galois group S4, which is solvable because 1 ⊆ Z/2Z⊕Z/2Z ⊆ A4 ⊆ S4.

3Why do we put these approximate values? It’s so you can check the answer for yourself!
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We will have

M

L

K

Q(ω, i)

4

3

2

1

(Z/2Z)2

A4

S4

4

3

2

To get to K from Q(ω, i), we will adjoin a square root. Going up the diagram, we will then
adjoin a cube root and then another square root.

Suppose the roots are α1, α2, α3, α4. Note that α1 + α2 + α3 + α4 = 0. What is L?
It is generated by things fixed under (Z/2Z)2. We wan to find a polynomial fixed by
(Z/2Z)2 ⊆ §4. Try y1 = (α1 + α2 − α3 − α4)

2/4 = −(α1 + α2)(α3 + α4). It has conjugates

y2 = (α1 + α3 − α2 − α4)
2/4

y3 = (α1 + α44− α2 − α3)
2/4

If we find y1, y2, y3,, we can find α1, α2, α3, α4 using some algebra.
y1, y2, y3 generate a degree 6 extension of Q(ω, i). The Galois group is S3 = S4/(Z/2Z)2.

So y1, y2, y3 are the roots of some cubic over Q. In fact, there are the roots of y3 − 2by2 +
(b2 − d)y2x = 0, which you can obtain via some messy algebra.4 We can solve this cubic to
find y1, y2, y3 and use those to find the αi.

1.3 Galois cohomology

1.3.1 Exact sequences

No one ever understands Galois cohomology the first time the encounter it.5

Suppose G is a group acting on some module M . Look at

1. MG, the subset of things fixed by G (the invariants of G on M).

2. MG = M/ {m− gm : m ∈M, g ∈ G}.
4Mathematicians tried to find this for degree 5, but it turns out to be a degree 6 polynomial, which

is even worse than what you started with. The underlying fact driving this occurrence is that S5 is not
solvable.

5Professor Borcherds says that no one ever understands Galois cohomology the first time they encounter
it. He even referred to this section as a “futile attempt” to explain it.
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The former of these is the largest submodule of M where G acts trivially, and the latter is
the largest quotient of M where G acts trivially.

Suppose that 0 → A → B → C → 0 is an exact sequence. Act on it by G. Is this
exact? No, we get

0→ AG → BG → CG���→ 0.

Similarly, we get that
���0→AG → BG → CG → 0.

Example 1.4. Take 0 → Z → Z → Z/2Z → 0. with G = Z/2Z acting as −1 on Z. We
get

0→ 0→ 0→ Z/2Z

Z/2Z→ Z/2Z→ Z/2|Z → 0.

Note that MG = HomZG(Z,M), where ZG is the group ring of G and HomZG is the
homomorphisms preserving the action of G. So M is a module over ZG. Z is a module
over ZG iwth elements of G acting trivially (g · n = n).

We had earlier in the course that Hom(∗, ∗) does not preserve exactness, but the failure
was controlled by “Ext.” Similarly,

MG = Z⊗ZGM.

The tensor product does not preserve exactness, but the failure is controlled by “Tor.”
Put H0(G,M) = MG. The zeroth cohomology is HomZG(Z,M). Put H i(G,M) =
ExtiZG(Z,M).

A long exact sequence of Ext gives us that if

0→ A→ B → C → 0

is exact, then so is

0→ H0(A)→ H0(B)→ H0(C)→ H1(A)→ H1(B)→ H1(C)→ H2(A)→ · · ·

Similarly, put H0(G,M) = MG and Hi(G,M) = TorZGi (Z,M). We get

· · · → H1(C)→ H0(A)→ H0(B)→ H0(C)→ 0

So H1 and H1 control the lack of exactness of MG and MG.
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1.3.2 Lang’s definition of cohomology

How does this relate to Lang’s definition? Lang defines the first cohomology group as
follows:

Definition 1.1. A crossed homomorphism is a map G → M sending σ 7→ aσ with aστ =
aσ + σaτ .

This is a homomorphism from G→M except if G acts trivially on M , then this is just
Hom(G,M) as groups.

Definition 1.2. A principal crossed homomorphism is a crossed homomorphism such that
aσ = b/σb for some fixed b.

Lang defines the first cohomology group as

H1(G,M) =
crossed homomorphisms

principal crossed homomorphisms
.

1.4 Hilbert’s theorem 90 for all Galois extensions

Theorem 1.2 (Hilbert’s theorem 90). Let L/K is a Galois extension with Galois group
G. Then H1(G,L∗) = 0.

Proof. We are given aσ ∈ L∗ with aστ = aσ · σaτ (multiply, not add, since we are dealing
with L∗, which is a multiplicative group). We want to find b with aσ = b/σb for all σ.
What is a crossed homomorphism? Look at σ 7→ aσσ. This is a linear map L → L, so
στ 7→ aστστ = aσσaττ = (aσσ)(aττ). So this map is a homomorphism G toEnd(L). We
will continue the proof next class.
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